Screen-printed Sn-doped TiO2 nanoparticles for photocatalytic dye removal from wastewater: A technological perspective

Environ Res. 2023 Nov 15;237(Pt 2):117079. doi: 10.1016/j.envres.2023.117079. Epub 2023 Sep 6.

Abstract

TiO2 is widely used as a photocatalyst with a wide band gap, which limited its application. Ion doping and formulating a high-quality screen-printing paste enhance its features. However, the printability of objects for advanced application seems essential nowadays. In this research, the Sn-doped TiO2 nanoparticles were prepared through a sol-gel method followed by calcination at various temperatures of 450 °C, 550 °C, 650 °C, 750 °C, and 850 °C. Screen-printing pastes were prepared with 18 wt% of the synthesized Sn-doped TiO2 nanoparticles to evaluate photocatalytic activity. Finally, the prepared paste with optimum nanoparticle concentration was screen printed onto the microscope glass slides at various printing times (1, 3, and 5 runs) and annealed at 500 °C temperature to investigate the thickness of printed Sn-doped TiO2 nanoparticles effect. The photocatalytic activity and crystal structure of nano Sn-doped-TiO2 were characterized using photoluminescence (PL) spectroscopy and X-ray diffraction (XRD). Transmission electron microscopy (TEM) and scanning electron microscope (SEM) analyses were conducted to investigate the size and morphology of the prepared nanoparticles, respectively. The highest photocatalytic activity for the degradation of methylene blue was obtained at the calcination temperature of 450 °C.

Keywords: Annealing; Doping; Dye removal; Nanoparticles; Photocatalysis; Screen printing.