Characterization of ginsenosides from Panax japonicus var. major (Zhu-Zi-Shen) based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry and desorption electrospray ionization-mass spectrometry imaging

Chin Med. 2023 Sep 8;18(1):115. doi: 10.1186/s13020-023-00830-9.

Abstract

Background: Panax japonicus var. major (PJM) belongs to the well-known ginseng species used in west China for hundreds of years, which has the effects of lung tonifying and yin nourishing, and exerts the analgesic, antitussive, and hemostatic activities. Compared with the other Panax species, the chemical composition and the spatial tissue distribution of the bioactive ginsenosides in PJM have seldom been investigated.

Methods: Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS) and desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) were integrated for the systematic characterization and spatial tissue distribution studies of ginsenosides in the rhizome of PJM. Considering the great difficulty in exposing the minor saponins, apart from the conventional Auto MS/MS (M1), two different precursor ions list-including data-dependent acquisition (PIL-DDA) approaches, involving the direct input of an in-house library containing 579 known ginsenosides (M2) and the inclusion of the target precursors screened from the MS1 data by mass defect filtering (M3), were developed. The in situ spatial distribution of various ginsenosides in PJM was profiled based on DESI-MSI with a mass range of m/z 100-1500 in the negative ion mode, with the imaging data processed by the High Definition Imaging (HDI) software.

Results: Under the optimized condition, 272 ginsenosides were identified or tentatively characterized, and 138 thereof were possibly not ever reported from the Panax genus. They were composed by 75 oleanolic acid type, 22 protopanaxadiol type, 52 protopanaxatriol type, 16 octillol type, 19 malonylated, 35 C-17 side-chain varied, and 53 others. In addition, the DESI-MSI experiment unveiled the differentiated distribution of saponins, but the main location in the cork layer and phloem of the rhizome. The abundance of the oleanolic acid ginsenosides was high in the rhizome slice of PJM, which was consistent with the results obtained by UHPLC/QTOF-MS.

Conclusion: Comprehensive characterization of the ginsenosides in the rhizome of PJM was achieved, with a large amount of unknown structures unveiled primarily. We, for the first time, reported the spatial tissue distribution of different subtypes of ginsenosides in the rhizome slice of PJM. These results can benefit the quality control and further development of PJM and the other ginseng species.

Keywords: DESI-MSI; Ginsenoside; Panax japonicus var. major; Precursor ions list; Spatial distribution; UHPLC/QTOF-MS.