Green microalgae are single-celled eukaryotic organisms that, in recent years, are becoming increasingly important in the nutraceutical, cosmetic, and pharmaceutical fields because of their high content of bioactive compounds. In this study, a particular green microalga was isolated from freshwater highland lakes of Ecuador and morphologically and molecularly identified as Chlamydomonas agloeformis (ChA), and it was studied for nutritional and nutraceutical properties. The phenolic composition and the fatty acids profile of lyophilized cells were determined. The methanolic extract was analyzed for the phenolic compounds profile and the antioxidant capacity by means of in vitro tests. Finally, Human Microvascular Endothelial Cells (HMEC-1) were exploited to explore the capacity of ChA to reduce the endothelial damage induced by oxidized LDL-mediated oxidative stress. The extract showed a good antioxidant ability thanks to the high content in polyphenolic compounds. The observed decrease in HMEC-1 cells endothelial damage also was probably due to the antioxidant compounds present in the extract. Based on the outcomes of our in vitro assays, ChA demonstrated to be a promising source of bioactive compounds possessing exceptional antioxidant capacities which make it a prospective functional food.
Keywords: Human Microvascular Endothelial Cells (HMEC-1); antioxidant; functional food; green microalgae.