Rice bran arabinoxylan compound (RBAC) is derived from defatted rice bran enzymatically treated with Lentinus edodes mycelium. This review explores biologically active compounds and mechanisms of action that support RBAC as an immunomodulating nutraceutical in generally healthy and/or aging individuals. Thirty-seven (n = 37) primary research articles fulfilled the selection criteria for review. Most research is based on Biobran MGN-3, which consists of complex heteropolysaccharides with arabinoxylan as its primary structure while also containing galactan and glucan. RBAC was found to invoke immunological activities through direct absorption via the digestive tract and interaction with immune cells at the Peyer's patches. RBAC was shown to promote innate defence by upregulating macrophage phagocytosis and enhancing natural killer cell activity while lowering oxidative stress. Through induction of dendritic cell maturation, RBAC also augments adaptive immunity by promoting T and B lymphocyte proliferation. RBAC acts as an immunomodulator by inhibiting mast cell degranulation during allergic reactions, attenuating inflammation, and downregulating angiogenesis by modulating cytokines and growth factors. RBAC has been shown to be a safe and effective nutraceutical for improving immune health, notably in aging individuals with reduced immune function. Human clinical trials with geriatric participants have demonstrated RBAC to have prophylactic benefits against viral infection and may improve their quality of life. Further research should explore RBAC's bioavailability, pharmacodynamics, and pharmacokinetics of the complex heteropolysaccharides within. Translational research to assess RBAC as a nutraceutical for the aging population is still required, particularly in human studies with larger sample sizes and cohort studies with long follow-up periods.
Keywords: MGN-3; anti-aging; biobran; natural killer cells; natural products; nutraceutical; physiological activities.