In this study, novel V2O5-decorated garlic peel biochar (VO/GPB) nanocomposites are prepared via the facile hydrothermal technique. As-synthesized VO/GPB is characterized by various spectroscopic and analytical techniques. The surface morphology of the as-prepared samples was predicted by SEM analysis, which shows that the block-like V2O5 was uniformly decorated on the stone-like GPB surface. The elemental mapping analysis confirms the VO/GPB composite is composed of the following elements: C, O, Na, Mg, Si, P, K, and V, without any other impurities. The photocatalytic activity of the VO/GPB nanocomposite was examined by the degradation of methyl orange (MO) under the irradiation of visible light; 84% degradation efficiency was achieved within 30 min. The reactive oxidative species (ROS) study reveals that hydroxyl and superoxide radicals play an essential role in MO degradation. Moreover, the antioxidant action of the VO/GPB nanocomposite was also investigated. From the results, the VO/GPB composite has higher antioxidant activity compared to ascorbic acid; the scavenging effect increased with increasing concentrations of VO/GPB composite until it reached 40 mg/L, where the scavenging effect was the highest at 93.86%. This study will afford innovative insights into other photocatalytic nanomaterials with effective applications in the field of photocatalytic studies with environmental compensation.
Keywords: VO/GPB; antioxidant; methyl orange; photodegradation; stability; visible light.