Satellite-estimated air-sea CO2 fluxes in the Bohai Sea, Yellow Sea, and East China Sea: Patterns and variations during 2003-2019

Sci Total Environ. 2023 Dec 15:904:166804. doi: 10.1016/j.scitotenv.2023.166804. Epub 2023 Sep 7.

Abstract

The Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) together form one of the largest marginal sea systems in the world, including enclosed and semi-enclosed ocean margins and a wide continental shelf influenced by the Changjiang River and the strong western boundary current (Kuroshio). Based on in situ seawater pCO2 data collected on 51 cruises/legs over the past two decades, a satellite retrieval algorithm for seawater pCO2 was developed by combining the semi-mechanistic algorithm and machine learning method (MeSAA-ML-ECS). MeSAA-ML-ECS introduced semi-analytical parameters, including the temperature-dependent seawater pCO2 (pCO2,therm) and upwelling index (UISST), to characterise the combined effect of atmospheric CO2 forcing, thermodynamic effects, and multiple mixing processes on seawater pCO2. The best-selected machine learning algorithm is XGBoost. The satellite-derived pCO2 achieved excellent performance in this complicated marginal sea, with low root mean square error (RMSE = 20 μatm) and mean absolute percentage deviation (APD = 4.12 %) for independent in situ validation dataset. During 2003-2019, the annual average CO2 sinks in the BS, YS, ECS, and entire study area were 0.16 ± 0.26, 3.85 ± 0.68, 14.80 ± 3.09, and 18.81 ± 3.81 Tg C/yr, respectively. Under continuously increasing atmospheric CO2 concentration, the BS changed from a weak source to a weak sink, the YS experienced interannual fluctuations but did not show significant trend, while the ECS acted as a strong sink with CO2 absorption increased from ∼10 Tg C in 2003 to ∼19 Tg C in 2019. In total, CO2 uptake in the entire study area increased by 85 % in 17 years. For the first time, we present the most refined variation in the satellite-derived pCO2 and air-sea CO2 flux dataset. These complete ocean carbon sink statistics and new insights will benefit further research on carbon fixation and its potential capacity.

Keywords: Air-sea CO(2) flux; Bohai Sea-Yellow Sea-East China Sea; Machine learning; Seawater pCO(2); Semi-analytical algorithm (MeSAA).