Background: Childhood Asthma Control Test (C-ACT) is a well-validated questionnaire for asthma controls among 4-11 years old children. This study aims to examine if longitudinal C-ACT score changes could also reflect lung pathophysiologic changes.
Methods: Thirty-seven children (43% female) aged 5 to 10 years old with mild or moderate asthma were followed up for 6 weeks with bi-weekly assessments of C-ACT, airway mechanics, lung function and respiratory inflammation. Associations of longitudinal changes in C-ACT score with lung pathophysiologic indicators were evaluated using linear mixed-effects models.
Results: A two-point worsening of total C-ACT score (sum of child and caregiver-reported) was associated with significant decreases in forced expiratory volume during the 1st second (FEV1) by 1.7% (P=0.04) and forced vital capacity (FVC) by 1.6% (P=0.01) and increased total airway resistance [airway resistance at 5 Hz (R5)] by 3.8% (P=0.05). A two-point worsening in child-reported score was significantly associated with 3.1% and 2.5% reductions in FEV1 and FVC, respectively, and with increases in R5 by 6.5% and large airway resistance [airway resistance at 20 Hz (R20)] by 5.5%. In contrast, a two-point worsening of caregiver-reported score was associated with none of the concurrent lung pathophysiologic measurements. Worsening of total C-ACT score was significantly associated with increased respiratory inflammation [fractional exhaled nitric oxide (FeNO)] in a subset (n=23) of children without eosinophilic airway inflammation. C-ACT scores were associated with none of the small airway measures.
Conclusions: In children with mild or moderate asthma, longitudinal C-ACT score changes could reflect acute changes in large airway resistance and lung function. Measures of small airway physiology would provide valuable complementary information for asthma control. Asthma phenotype may affect whether C-ACT score could reflect respiratory inflammation.
Keywords: Airway mechanics; lung function; respiratory inflammation; small airway.
2023 Journal of Thoracic Disease. All rights reserved.