Antimicrobial resistance among bacterial strains has emerged out to be a serious threat and contributes to the loss of effectiveness of the common antibiotics. New Delhi metallo-β-lactamase-1 (blaNDM-1) is an enzyme present in several pathogenic bacteria with a high incidence in Klebsiella pneumoniaie and plays a crucial role in the development of antibacterial resistance. Mur enzymes are also important alternative drug targets in addition to blaNDM-1 which are crucial for the survival of the bacteria. Vitex negundoi is an aromatic medicinaltree with proven antibacterial properties. Fifteen compounds from V. negundo were evaluated for their inhibitory effects on the target proteins blaNDM-1, Mur C, Mur E and Mur F of K. pneumoniae through molecular docking using the Glide (xp) module of Schrodinger. ADME toxicity was also predicted for all the fifteen compounds in the QikProp module. The docking results revealed that the compounds agnuside, negundoside and isoorientin showed promising inhibitory effects on all four targets blaNDM-1, Mur C, Mur E and Mur F of K. pneumoniae with docking scores greater than -7 kcal/mol and reasonable hydrogen bond interactions. The findings of this study provide a lead for developing novel drugs against potent multidrug-resistant K. pneumoniae.
Keywords: Klebsiella pneumoniai; Vitex negundoi; molecular docking.
© 2022 Biomedical Informatics.