When humans walk, it is important for them to have some measure of the distance they have traveled. Typically, many cues from different modalities are available, as humans perceive both the environment around them (for example, through vision and haptics) and their own walking. Here, we investigate the contribution of visual cues and nonvisual self-motion cues to distance reproduction when walking on a treadmill through a virtual environment by separately manipulating the speed of a treadmill belt and of the virtual environment. Using mobile eye tracking, we also investigate how our participants sampled the visual information through gaze. We show that, as predicted, both modalities affected how participants (N = 28) reproduced a distance. Participants weighed nonvisual self-motion cues more strongly than visual cues, corresponding also to their respective reliabilities, but with some interindividual variability. Those who looked more toward those parts of the visual scene that contained cues to speed and distance tended also to weigh visual information more strongly, although this correlation was nonsignificant, and participants generally directed their gaze toward visually informative areas of the scene less than expected. As measured by motion capture, participants adjusted their gait patterns to the treadmill speed but not to walked distance. In sum, we show in a naturalistic virtual environment how humans use different sensory modalities when reproducing distances and how the use of these cues differs between participants and depends on information sampling.NEW & NOTEWORTHY Combining virtual reality with treadmill walking, we measured the relative importance of visual cues and nonvisual self-motion cues for distance reproduction. Participants used both cues but put more weight on self-motion; weight on visual cues had a trend to correlate with looking at visually informative areas. Participants overshot distances, especially when self-motion was slow; they adjusted steps to self-motion cues but not to visual cues. Our work thus quantifies the multimodal contributions to distance reproduction.
Keywords: distance perception; eye movements; multisensory perception; virtual reality; walking.