Eutrophication impairs lake ecosystems at a global scale. In this context, as benthic microalgae are well-established warnings for a large range of stressors, particularly nutrient enrichment, the Water Framework Directive required the development of diatom-based methods to monitor lake eutrophication. Here, we present the diatom-based index we developed for French lakes, named IBDL (Indice Biologique Diatomées en Lacs). Data were collected in 93 lakes from 2015 to 2020. A challenge arose from the discontinuous pressure gradient of our dataset, especially the low number of nutrient-impacted lakes. To analyze the data we opted for the so-called "Threshold Indicator Taxa ANalysis" method, which makes it possible to determine a list of "alert taxa." We obtained a multimetric index based on specific pressure gradients (Kjeldahl nitrogen, suspended matter, biological oxygen demand, and total phosphorous). Considering the European intercalibration process, the very good correlation between IBDL and the common metric (R2 from 0.52 to 0.87 according to the lake alkalinity type) makes us very confident in our ability to match future IBDL quality thresholds with European standards. The IBDL proved at last to be particularly relevant as it has a twofold interest: an excellent relationship with total phosphorus (R2 from 0.63 to 0.83 according to the lake alkalinity type) and a possible application to any lake metatype. Its complementarity with macrophyte-based indices moreover justifies the use of at least two primary producer components for lake ecological status classification.
Keywords: Ecological assessment; Lakes; Phytobenthos; Water framework directive.
© 2023. The Author(s).