Large Digital Imaging and Communications in Medicine (DICOM) datasets are key to support research and the development of machine learning technology in radiotherapy (RT). However, the tools for multi-centre data collection, curation and standardisation are not readily available. Automated batch DICOM export solutions were demonstrated for a multicentre setup. A Python solution, Collaborative DICOM analysis for RT (CORDIAL-RT) was developed for curation, standardisation, and analysis of the collected data. The setup was demonstrated in the DBCG RT-Nation study, where 86% (n = 7748) of treatments in the inclusion period were collected and quality assured, supporting the applicability of the end-to-end framework.
Keywords: Automation; Big data; Breast cancer; DICOM; Data collection; Data science; Radiotherapy.
© 2023 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology.