A combined treatment of high-pressure homogenization (HPH) and pH-shifting on the mixture of α-lactalbumin (α-LA) and tryptophan (Trp) was used to fabricate nanoparticles (α-LA-Trp-NP). The optimal α-LA/Trp ratio (5:1), HPH pressure (206.8 MPa), and recirculation time (40 min) was found to produce small α-LA-Trp-NP (243.0 ± 7.2 nm) with a narrow particle size distribution. Comparing the size and morphology of α-LA-NPs with α-LA-Trp-NPs indicated that the presence of Trp significantly affected the size and morphology of the NPs in the dry form. The stability of the α-LA-Trp-NPs was improved by using the combination of HPH and pH-shifting. The α-LA-Trp-NPs showed better freeze-thaw stability and retained the particle characteristics with heat treatment at 63 °C, 30 min after the freeze-thaw cycle. α-LA-Trp-NPs were also observed to have remarkable stability against pH changes and thermal treatments at 63 °C, 30 min, and 90 °C, 2 min.
Keywords: High-pressure homogenization; Nanoparticles; Tryptophan; pH-shifting; α-lactalbumin.
Copyright © 2023 Elsevier Ltd. All rights reserved.