Background: Echocardiography (ECHO) and cardiac magnetic resonance imaging (MRI) are used to observe changes in the left ventricular structure in patients with breast and gastric cancer after 6 cycles of chemotherapy. Based on the observed values, we aimed to evaluate the cardiotoxicity of anthracyclines in cancer patients and to analyze the consistency of the two examination methods in assessing left ventricular function after chemotherapy.
Methods: From January 2020 to January 2022, the data of 80 patients with malignant tumors who received anthracycline chemotherapy (breast cancer, n = 40; gastric cancer, n = 40) and 40 healthy volunteers (Control group) were retrospectively collected. Serum high-sensitivity cardiac troponin T (hs-cTnT) levels were detected by an automatic immunoassay analyzer. Left ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV) and left ventricular ejection fraction (LVEF) were measured by cardiac MRI and 2-dimensional ECHO using the biplane Simpson's method.
Results: Compared with baseline values, serum high-sensitivity cardiac troponin T (hs-cTnT) levels were significantly increased in patients with breast cancer and gastric cancer after 6 cycles of chemotherapy (P < 0.05). In addition, LVEDV, LVESV and LVEF measured with MRI were higher than those detected by ECHO in cancer patients after 6 cycles of chemotherapy (P < 0.05). And the Bland-Altman plot analysis showed that LVEDV, LVESV and LVEF measured by the two examination methods were in good agreement.
Conclusion: Breast and gastric cancer patients exhibited elevated levels of hs-cTnT after 6 cycles of chemotherapy, indicating potential cardiotoxicity. Additionally, cardiac MRI and 2-dimensional ECHO showed good agreement in assessing left ventricular function, with ECHO tending to underestimate volume measurements compared to MRI.
Keywords: Cardiac magnetic resonance imaging; Cardiotoxicity; Chemotherapy; Echocardiography; Left ventricular function.
© 2023. BioMed Central Ltd., part of Springer Nature.