Tert-butyl hydroperoxide induces ferroptosis of bone mesenchymal stem cells by repressing the prominin2/BACH1/ROS axis

Am J Physiol Cell Physiol. 2023 Nov 1;325(5):C1212-C1227. doi: 10.1152/ajpcell.00224.2023. Epub 2023 Sep 18.

Abstract

Ferroptosis has been proven critical for survival following bone marrow mesenchymal stem cells (BMSCs) explantation. Suppression of ferroptosis in BMSCs will be a valid tactic to elevate the therapeutic potential of engrafted BMSCs. Prominin2 is a pentaspanin protein involved in mediating iron efflux and thus modulates resistance to ferroptosis, but its role in tert-butyl hydroperoxide (TBHP)-induced BMSCs ferroptosis remains elusive. We examined the biological effect of prominin2 in vitro and in vivo by using cell proliferation assay, iron assay, reactive oxygen species (ROS) examination, malondialdehyde assay, glutathione (GSH) examination, Western blot, quantitative reverse transcription-PCR, immunofluorescence staining assay, gene expression inhibition and activation, co-immunoprecipitation (CO-IP) assay, radiographic analysis, and histopathological analysis. Our study demonstrated that prominin2 activity was impaired in TBHP-induced BMSCs ferroptosis. We found that PROM2 (encoding the protein prominin2) activation delayed the onset of ferroptosis and PROM2 knockdown deteriorated the course of ferroptosis. CO-IP, Western blot, and immunofluorescence demonstrated that prominin2 exerts antiferroptosis effects by inhibiting BTB and CNC homology 1 (BACH1) that promotes ROS generation, and thus exerts potent antioxidant effects in oxidative stress (OS)-induced BMSCs ferroptosis, including elevating BMSCs' survival rate and enhancing GSH contents. BMSCs with PROM2 overexpression also partially delayed the progression of intervertebral disk degeneration in vivo, as illustrated by less loss of disk height and lower histological scores. Our findings revealed a mechanism that the prominin2/BACH1/ROS axis participates in BMSCs ferroptosis and the strengthening of this axis is promising to maintain BMSCs' survival after explantation.NEW & NOTEWORTHY We found that prominin2 might be a potential biomarker and is expected to be utilized to augment engrafted bone marrow mesenchymal stem cells (BMSCs) survival rate. The prominin2/BTB and CNC homology 1 (BACH1)/reactive oxygen species (ROS) axis, which participates in the regulation of BMSCs ferroptosis induced by tert-butyl hydroperoxide (TBHP), is uncovered in our study. The therapeutic targeting of the prominin2/BACH1/ROS axis components is promising to elevate the survival of transplanted BMSCs in clinical practice.

Keywords: BTB and CNC homology 1 (BACH1); bone marrow mesenchymal stem cells (BMSCs); ferroptosis; oxidative stress; prominin2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AC133 Antigen / genetics
  • AC133 Antigen / metabolism
  • Animals
  • Basic-Leucine Zipper Transcription Factors / genetics
  • Basic-Leucine Zipper Transcription Factors / metabolism
  • Cells, Cultured
  • Ferroptosis* / drug effects
  • Male
  • Mesenchymal Stem Cells* / drug effects
  • Mesenchymal Stem Cells* / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Reactive Oxygen Species / metabolism
  • Signal Transduction / drug effects
  • tert-Butylhydroperoxide* / pharmacology
  • tert-Butylhydroperoxide* / toxicity

Substances

  • AC133 Antigen
  • Basic-Leucine Zipper Transcription Factors
  • Prom1 protein, mouse
  • Reactive Oxygen Species
  • tert-Butylhydroperoxide