Cancer-associated fibroblasts paly critical roles in regulating cancer cell biological properties by intricate and dynamic communication networks. But the mechanism of CAFs in clear cell renal cell carcinoma (ccRCC) is not clear. In our study, we identified CAFs and malignant cells from the integrated scRNA-seq datasets and establish a CAF-derived communication signature based on the highly activated regulons ETS1 and MEF2C. We stratified the ccRCC TME into two molecular subtypes with distinct prognoses, immune cell infiltration landscapes, and immune-related characteristics. The model derived from signature demonstrated high accuracy and robustness in predicting prognosis and ICIs therapy responses. Subsequently, the SLC38A5 of the model was found upregulated in CAFs and was related to decreased survival probabilities, inflamed TME, and upregulated inhibitory checkpoints. SLC38A5 inhibition could attenuate the pro-tumoral abilities of CAFs in terms of proliferation, migration, and invasion. Mechanically, CCL5 could restore these properties induced by SLC38A5 inhibition. In conclusion, our communication signature and its derived model enabled a more precise selection of ccRCC patients who were potential beneficiaries of ICIs. Besides, the SLC38A5-CCL5 axis may serve as a promising target for ccRCC treatment.
Keywords: Cancer-associated fibroblast; Clear cell renal cell carcinoma; Immunotherapy; SlC38A5; Tumor microenvironment.
Copyright © 2023. Published by Elsevier Inc.