Purpose: Retinitis pigmentosa (RP) associated with biallelic variants in CDHR1 has rarely been reported, and detailed phenotyping data are not available. RP implies relative preservation of foveal cones, when compared to cone-rod dystrophy associated with biallelic null variants in CDHR1. We hypothesize that RP may occur in association with one or more hypomorphic CDHR1 alleles.
Materials and methods: Retrospective report of a 48-year-old patient with CDHR1-associated RP with a hypomorphic missense variant c.562 G>A, p. (Gly188Ser) and a novel, unreported variant affecting a canonical splice acceptor site (c.784-1 G>C). Clinical examination, multimodal retinal imaging, electroretinography, visual field testing, and mesopic microperimetry were undertaken 8 years apart. Scotopic microperimetry was also performed. The DNA sequence context of the variants was examined to identify theoretical CRISPR-Cas9 base-editing strategies.
Results: The patient presented at 35 years with a 12-year history of nyctalopia. His best corrected visual acuity was 20/20. Clinical presentation, multimodal retinal imaging studies, electroretinography, and mesopic microperimetry were typical of a progressive rod-cone dystrophy (i.e. classic RP). There were no scotomas within the central field as would be expected at this age in CDHR1-associated cone-rod dystrophy. Scotopic microperimetry suggested some preservation of macular cone over rod function, although both were severely impaired. A suitable CRISPR adenine base editor was identified that could theoretically correct the missense variant c.562 G>A, p. (Gly188Ser).
Conclusions: CDHR1-associated RP shows a relative preservation of cone function in the presence of a presumed hypomorphic allele and may be considered a hypomorphic disease phenotype. Further work is required to identify modifying factors that determine disease phenotype since macular dystrophy, with relative sparing of rods, may also occur with hypomorphic CDHR1 alleles.
Keywords: CDHR1; Retinitis pigmentosa; genotype-phenotype; hypomorphic; microperimetry; rod-cone dystrophy.