Harnessing the potential of microalgae-bacteria interaction for eco-friendly wastewater treatment: A review on new strategies involving machine learning and artificial intelligence

J Environ Manage. 2023 Nov 15:346:119004. doi: 10.1016/j.jenvman.2023.119004. Epub 2023 Sep 19.

Abstract

In the pursuit of effective wastewater treatment and biomass generation, the symbiotic relationship between microalgae and bacteria emerges as a promising avenue. This analysis delves into recent advancements concerning the utilization of microalgae-bacteria consortia for wastewater treatment and biomass production. It examines multiple facets of this symbiosis, encompassing the judicious selection of suitable strains, optimal culture conditions, appropriate media, and operational parameters. Moreover, the exploration extends to contrasting closed and open bioreactor systems for fostering microalgae-bacteria consortia, elucidating the inherent merits and constraints of each methodology. Notably, the untapped potential of co-cultivation with diverse microorganisms, including yeast, fungi, and various microalgae species, to augment biomass output. In this context, artificial intelligence (AI) and machine learning (ML) stand out as transformative catalysts. By addressing intricate challenges in wastewater treatment and microalgae-bacteria symbiosis, AI and ML foster innovative technological solutions. These cutting-edge technologies play a pivotal role in optimizing wastewater treatment processes, enhancing biomass yield, and facilitating real-time monitoring. The synergistic integration of AI and ML instills a novel dimension, propelling the fields towards sustainable solutions. As AI and ML become integral tools in wastewater treatment and symbiotic microorganism cultivation, novel strategies emerge that harness their potential to overcome intricate challenges and revolutionize the domain.

Keywords: Artificial intelligence and machine learning; Co-culturing; Microalgae-bacteria symbiosis; Wastewater; Wastewater treatment.