The present study was focused on the preparation of cobalt oxide (CoO) and barium-doped cobalt oxide (Ba-doped CoO) by following the co-precipitation method for the degradation of Emamectin benzoate pesticide in the aqueous medium. The prepared catalysts were characterized using SEM, EDX, and XRD to confirm the formation of catalysts and to observe the variation in the composition of catalysts during the degradation study. It can be suggested from the results of SEM, EDX, XRD, and FTIR analyses that Ba atom has successfully incorporated in the crystalline structure of CoO. The degradation of Emamectin benzoate pesticide was studied under the influence of different factors like solution pH, the dose of catalyst, contact time, temperature, and initial concentration of pesticide. It was observed that solution pH affects the degradation of the pesticide, and maximum degradation (23% and 54%) was found at pH 5.0 and 6.0 using CoO and Ba-doped CoO, respectively. The degradation of pesticides was found to be increased continuously (27-35% in case of CoO while 47-58% in case Ba-doped CoO) with the time of contact. However, the degradation was found to be decreased (23-3% in case of CoO while 47-44% in case Ba-doped CoO) with an increase in temperature. Likewise, in the beginning, degradation was observed to be increased up to some extent with the dose of catalyst and initial concentration of pesticide but started to decrease with further augmentation in the dose of catalyst and initial concentration of pesticide. It may be concluded from this study that doping of Ba considerably enhanced the photocatalytic ability of CoO for Emamectin benzoate pesticide.
Keywords: Ba-doped CoO; CoO; Emamectin benzoate; Photocatalytic degradation.
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.