Luminescent carbon dots have gained significant attention in various fields due to their unique optical properties and potential applications. Here, the study was aimed to propose a novel and sustainable approach for the synthesis of luminescent carbon dots (ICDs) using IV (Intravenous) medical bag waste. The ICDs were synthesized through a facile and cost-effective method that involved the carbonization of IV bag waste followed by surface functionalization with chitosan. The synthesized ICDs were characterized using UV-Visible spectrum (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The size of the ICDs is between 2 and 8 nm. The ICDs effectively inhibited the growth of both gram positive and gram negative bacterial strains with the inhibitory activity in the range of 11-14 mm and 12-18 mm, respectively. Results of antibiofilm activity of ICDs varying concentrations (50 and 100 μg/ml) showed that it effectively distorted the biofilm architecture and thereby validated its promising potentials. In vitro antioxidant activity showed remarkable DPPH radical scavenging potentials of ICDs (33.4%-70.1%). Results of MTT assay revealted that ICDs showed potent cytotoxic effect on HeLa cells in a dose dependant matter (25-400 μg/ml). Furthermore, when HeLa cells were excited at wavelengths of 380 nm, 440 nm and 540 nm, cell-imaging experiments using ICDs revealed the presence of blue, green, and red fluorescence. This innovative method not only addresses the issue of IV bag waste in a sustainable manner but also opens up exciting possibilities for the advancement of versatile carbon-based materials in the field of biomedicine.
Keywords: Antimicrobial; Biocompatible; Bioimaging; Chitosan; IV bag waste; Label free; Luminescence carbon dot.
Copyright © 2023 Elsevier Inc. All rights reserved.