RAD54B belongs to the SNF2/SWI2 superfamily, participating in homologous recombination repair. DNA damage is the central driver of aging, but there is no direct evidence of an association between RAD54B and vascular aging. The present study sought to investigate the role and mechanisms of RAD54B in endothelial senescence. In senescent animal models, including spontaneously hypertensive rats, normal aging mice, and D-gal-induced senescent mice, and senescent cell models induced by H2O2, D-gal, and culture, RAD54B was remarkably downregulated. Knockdown of RAD54B increased the expression of p53 and p21, increased the ratio of SA-β-gal-positive cells, and decreased the proportion of EdU-positive cells. Conversely, overexpression of RAD54B reversed the senescent phenotypes stimulated by H2O2 and delayed replicative endothelial senescence. Mechanistically, silencing RAD54B compensatorily increased the expression of RAD51/XRCC4, which remained unchanged in H2O2-induced senescence. RAD54B lacking the SNF2 domain could still reverse the increasing expression of p53/p21 induced by H2O2. RAD54B reduced γH2A.X expression and inhibited the expression and phosphorylation of CHK1. In conclusion, RAD54B exerts a direct protective effect against DNA damage through enhancing homologous recombination repair in endothelial senescence, resulting in inhibition of the downstream CHK1/p53/p21 pathway, suggesting that RAD54B may be a potential therapeutic target for vascular aging-associated diseases.
Keywords: DNA damage repair; RAD54B; vascular endothelial senescence.