Objective: Despite the extensive literature exploring alert fatigue, most studies have focused on describing the phenomenon, but not on fixing it. The authors aimed to identify data useful to avert clinically irrelevant alerts to inform future research on clinical decision support (CDS) design.
Methods: We conducted a retrospective observational study of opioid drug allergy alert (DAA) overrides for the calendar year of 2019 at a large academic medical center, to identify data elements useful to find irrelevant alerts to be averted.
Results: Overall, 227,815 DAAs were fired in 2019, with an override rate of 91 % (n = 208196). Opioids represented nearly two-thirds of these overrides (n = 129063; 62 %) and were the drug class with the highest override rate (96 %). On average, 29 opioid DAAs were overridden per patient. While most opioid alerts (97.1 %) are fired for a possible match (the drug class of the allergen matches the drug class of the prescribed drug), they are overridden significantly less frequently for definite match (exact match between allergen and prescribed drug) (88 % vs. 95.9 %, p < 0.001). When comparing the triggering drug with previously administered drugs, override rates were equally high for both definite match (95.9 %), no match (95.5 %), and possible match (95.1 %). Likewise, when comparing to home medications, overrides were excessively high for possible match (96.3 %), no match (96 %), and definite match (94.4 %).
Conclusion: We estimate that 74.5% of opioid DAAs (46.4% of all DAAs) at our institution could be relatively safely averted, since they either have a definite match for previous inpatient administrations suggesting drug tolerance or are fired as possible match with low risk of cross-sensitivity. Future research should focus on identifying other relevant data elements ideally with automated methods and use of emerging standards to empower CDS systems to suppress false-positive alerts while avoiding safety hazards.
Keywords: Alert fatigue; Clinical decision support; Drug allergy; Electronic health records; Narcotic analgesics.
Copyright © 2023 Elsevier Inc. All rights reserved.