Gray-level co-occurrence matrix (GLCM) and discrete wavelet transform (DWT) analyses are two contemporary computational methods that can identify discrete changes in cell and tissue textural features. Previous research has indicated that these methods may be applicable in the pathology for identification and classification of various types of cancers. In this study, we present findings that squamous epithelial cells in laryngeal carcinoma, which appear morphologically intact during conventional pathohistological evaluation, have distinct nuclear GLCM and DWT features. The average values of nuclear GLCM indicators of these cells, such as angular second moment, inverse difference moment, and textural contrast, substantially differ when compared to those in noncancerous tissue. In this work, we also propose machine learning models based on random forests and support vector machine that can be successfully trained to separate the cells using GLCM and DWT quantifiers as input data. We show that, based on a limited cell sample, these models have relatively good classification accuracy and discriminatory power, which makes them suitable candidates for future development of AI-based sensors potentially applicable in laryngeal carcinoma diagnostic protocols.
Keywords: cancer; larynx; microscopy; morphology; nucleus.
© The Author(s) 2023. Published by Oxford University Press on behalf of the Microscopy Society of America. All rights reserved. For permissions, please e-mail: [email protected].