As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mutates continually, the current vaccines are unable to provide sufficient protection. It is important to develop a broad-spectrum vaccine with conserved antigens to prevent variant infection. Here we fused the SARS-CoV-2 N protein with Helicobacter pylori nonheme ferritin to construct a SARS-CoV-2 N-Ferritin nanoparticle vaccine. Compared with the monomer N protein, the N-Ferritin nanoparticles induced more lymph node dendritic cells in mice to trigger adoptive immunity. Following this, the N-Ferritin elicited more robust and long-lasting antibody responses, which had better cross-reactivity with the SARS-CoV N protein. It is also worth noting that higher levels of N-specific IgG and IgA were distributed in the lungs of N-Ferritin-immunized mice. Furthermore, the N-Ferritin nanoparticles also resulted higher proportion of interferon-γ+ CD8+ T cells, CD8+ Tcm cells, and T cells with cross-reactivity in SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome-related coronavirus. The conserved N-based nanoparticles could provide a promising vaccine developing strategy against SARS-CoV-2 variants and other coronaviruses.
Keywords: N protein; SARS-CoV-2; cellular immunity; cross-reactivity; humoral immunity; nanoparticle vaccine.
© 2023 Wiley Periodicals LLC.