Evaluation of Lipid Extraction Protocols for Untargeted Analysis of Mouse Tissue Lipidome

Metabolites. 2023 Sep 9;13(9):1002. doi: 10.3390/metabo13091002.

Abstract

Lipidomics refers to the full characterization of lipids present within a cell, tissue, organism, or biological system. One of the bottlenecks affecting reliable lipidomic analysis is the extraction of lipids from biological samples. An ideal extraction method should have a maximum lipid recovery and the ability to extract a broad range of lipid classes with acceptable reproducibility. The most common lipid extraction relies on either protein precipitation (monophasic methods) or liquid-liquid partitioning (bi- or triphasic methods). In this study, three monophasic extraction systems, isopropanol (IPA), MeOH/MTBE/CHCl3 (MMC), and EtOAc/EtOH (EE), alongside three biphasic extraction methods, Folch, butanol/MeOH/heptane/EtOAc (BUME), and MeOH/MTBE (MTBE), were evaluated for their performance in characterization of the mouse lipidome of six different tissue types, including pancreas, spleen, liver, brain, small intestine, and plasma. Sixteen lipid classes were investigated in this study using reversed-phase liquid chromatography/mass spectrometry. Results showed that all extraction methods had comparable recoveries for all tested lipid classes except lysophosphatidylcholines, lysophosphatidylethanolamines, acyl carnitines, sphingomyelines, and sphingosines. The recoveries of these classes were significantly lower with the MTBE method, which could be compensated by the addition of stable isotope-labeled internal standards prior to lipid extraction. Moreover, IPA and EE methods showed poor reproducibility in extracting lipids from most tested tissues. In general, Folch is the optimum method in terms of efficacy and reproducibility for extracting mouse pancreas, spleen, brain, and plasma. However, MMC and BUME methods are more favored when extracting mouse liver or intestine.

Keywords: UHPLC-HRMS; lipid extraction; mouse lipidome; mouse tissue; untargeted lipidomics.