Beneficial Effects of Lactobacilli Species on Intestinal Homeostasis in Low-Grade Inflammation and Stress Rodent Models and Their Implication in the Modulation of the Adhesive Junctional Complex

Biomolecules. 2023 Aug 24;13(9):1295. doi: 10.3390/biom13091295.

Abstract

Intestinal barrier integrity is essential in order to maintain the homeostasis of mucosal functions and efficient defensive reactions against chemical and microbial challenges. An impairment of the intestinal barrier has been observed in several chronic diseases. The gut microbiota and its impact on intestinal homeostasis is well described and numerous studies suggest the ability of some probiotic strains to protect the intestinal epithelial integrity and host homeostasis. In this work, we aimed to assess the beneficial effects of three Lactobacillus strains (Lacticaseibacillus rhamnosus LR04, Lacticaseibacillus casei LC03, and Lactiplantibacillus plantarum CNCM I-4459) and their mechanism of action in low-grade inflammation or neonatal maternal separation models in mice. We compared the impact of these strains to that of the well-known probiotic Lacticaseibacillus rhamnosus GG. Our results demonstrated that the three strains have the potential to restore the barrier functions by (i) increasing mucus production, (ii) restoring normal permeability, and (iii) modulating colonic hypersensitivity. Moreover, gene expression analysis of junctional proteins revealed the implication of Claudin 2 and Cingulin in the mechanisms that underlie the interactions between the strains and the host. Taken together, our data suggest that LR04, CNCM I-4459, and LC03 restore the functions of an impaired intestinal barrier.

Keywords: Lactobacillus; barrier functions; chronic diseases; leaky gut; probiotics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Homeostasis
  • Inflammation
  • Lacticaseibacillus rhamnosus*
  • Lactobacillus*
  • Maternal Deprivation
  • Mice

Grants and funding

This work was funded by Indigo Therapeutics. This work was supported by ANRT. This work was supported by the Ministère de la Recherche et de la Technologie (NeuroDol laboratory (INSERM 1107)), but also by the Region Auvergne-Rhône-Alpes and FEDER, No. Thématiques émergentes, Pack Ambition Recherche; the French Government IDEX-ISITE Initiative, No. 16-IDEX-0001-CAP 20-25, and the Clermont Auvergne Métropole, No “Recherche-Action” project.