TmMgB5O10 spontaneous crystals were synthesized via the flux-growth technique from a K2Mo3O10-based solvent. The crystal structure of the compound was solved and refined within the space group P21/n. The first principles calculations of the electronic structure reveal that TmMg-pentaborate with an ideal not defected crystal structure is an insulator with an indirect energy band gap of approximately 6.37 eV. Differential scanning calorimetry measurements and powder X-ray diffraction studies of heat-treated solids show that TmMgB5O10 is an incongruent melting compound. A characteristic band of the Tm3+ cation corresponding to the 3H6 → 1D2 transition is observed in the photoluminescence excitation spectra of TmMg-borate. The as-obtained crystals exhibit intense blue emission with the emission peaks centered at 455, 479, 667, and 753 nm. The most intensive band corresponds to the 1D2 → 3F4 transition. TmMgB5O10 solids demonstrate the thermal stability of photoluminescence.
Keywords: borates; crystal structure; differential scanning calorimetry; electronic band; flux growth; photoluminescence.