Objective: We leveraged an artificial intelligence deep-learning convolutional neural network (DL CNN) to detect calcified carotid artery atheromas (CCAAs) on cone beam computed tomography (CBCT) images.
Study design: We obtained 137 full-volume CBCT scans with previously diagnosed CCAAs. The DL model was trained on 170 single axial CBCT slices, 90 with extracranial CCAAs and 80 with intracranial CCAAs. A board-certified oral and maxillofacial radiologist confirmed the presence of each CCAA. Transfer learning through a U-Net-based CNN architecture was utilized. Data allocation was 60% training, 10% validation, and 30% testing. We determined the accuracy of the DL model in detecting CCAA by calculating the mean training and validation accuracy and the area under the receiver operating characteristic curve (AUC). We reserved 5 randomly selected unseen full CBCT volumes for final testing.
Results: The mean training and validation accuracy of the model in detecting extracranial CCAAs was 92% and 82%, respectively, and the AUC was 0.84 with 1.0 sensitivity and 0.69 specificity. The mean training and validation accuracy in detecting intracranial CCAAs was 61% and 70%, respectively, and the AUC was 0.5 with 0.93 sensitivity and 0.08 specificity. Testing of full-volume scans yielded an AUC of 0.72 and 0.55 for extracranial and intracranial CCAAs, respectively.
Conclusion: Our DL model showed excellent discrimination in detecting extracranial CCAAs on axial CBCT images and acceptable discrimination on full-volumes but poor discrimination in detecting intracranial CCAAs, for which further research is required.
Copyright © 2023 Elsevier Inc. All rights reserved.