Droplet-based bioprinting has long struggled with the manipulation and dispensation of individual cells from a printhead, hindering the fabrication of artificial cellular structures with high precision. The integration of modern microfluidic modules into the printhead of a bioprinter is emerging as one approach to overcome this bottleneck. This convergence allows for high-accuracy manipulation and spatial control over placement of cells during printing, and enables the fabrication of cell arrays and hierarchical heterogenous microtissues, opening new applications in bioanalysis and high-throughput screening. In this review, we summarize recent developments in the use of microfluidics in droplet printing systems, with consideration of the working principles; present applications extended through microfluidic features; and discuss the future of this technology.
Keywords: biofabrication; droplet-based bioprinting; microfluidics; microtissues; single cell printing.
Copyright © 2023 Elsevier Ltd. All rights reserved.