L-type Ca 2+ channels (Ca V 1.2/1.3) convey influx of calcium ions (Ca 2+ ) that orchestrate a bevy of biological responses including muscle contraction and gene transcription. Deficits in Ca V 1 function play a vital role in cardiac and neurodevelopmental disorders. Yet conventional pharmacological approaches to upregulate Ca V 1 are limited, as excessive Ca 2+ influx leads to cytotoxicity. Here, we develop a genetically encoded enhancer of Ca V 1.2/1.3 channels (GeeC) to manipulate Ca 2+ entry in distinct physiological settings. Specifically, we functionalized a nanobody that targets the Ca V macromolecular complex by attaching a minimal effector domain from a Ca V enhancer-leucine rich repeat containing protein 10 (Lrrc10). In cardiomyocytes, GeeC evoked a 3-fold increase in L-type current amplitude. In neurons, GeeC augmented excitation-transcription (E-T) coupling. In all, GeeC represents a powerful strategy to boost Ca V 1.2/1.3 function in distinct physiological settings and, in so doing, lays the groundwork to illuminate new insights on neuronal and cardiac physiology and disease.