Our current understanding of the relationship between estrogen and human endothelial colony-forming cell (hECFC) function is based almost exclusively on studies investigating estradiol action at nuclear estrogen receptors. In the current study the hypothesis was tested that the less potent estrogen receptor agonist, estrone, affects hECFC proliferation, migration, secretion, and tube formation in a way that is unique from that of estradiol. The relationship between the estrogens, estradiol and estrone, is clinically important, particularly in postmenopausal women where estradiol levels wane and estrone becomes the predominant estrogen. Cultured hECFCs from peripheral blood mononuclear cell fractions were treated with concentrations of estradiol and estrone ranging from 1 nM to 1 μM separately and in combination. Following treatment, proliferation, migration, ability to attract other hECFCs (autocrine secretion), and ability to enhance endothelial cell tube formation (tubulogenesis) were tested. Functional assays revealed unique, concentration-dependent physiological effects of estrone and estradiol. Estradiol exposure resulted in increased hECFC proliferation, migration, secretion of chemoattractant, and enhancement of tube formation as expected. As with estradiol, hECFC secretion of chemoattractant increased significantly with each increase in estrone exposure. Estrone treatment produced a biphasic, concentration-dependent relationship with proliferation and tube formation and relatively no effect on hECFC migration at any concentration. The quantitative relationship between the effects of estrone and estradiol and each hECFC function was analyzed. The extent to which estrone was similar in effect to that of estradiol was dependent on both the concentrations of estradiol and estrone and the hECFC function measured. Interestingly, when the two estrogens were present, differing ratios resulted in unique functional responses. hECFCs that were treated with combinations of estrone and estradiol with high estrone to estradiol ratios showed decreased proliferative capacity. Conversely, hECFCs that were treated with combinations that were relatively high in estradiol, showed increased proliferative capacity. Cells that were treated with estrone and estradiol in equal concentrations showed an attenuated proliferative response that was decreased compared to the proliferation that either estrone or estradiol produced when they were present alone. This co-inhibitory relationship, which has not been previously reported, challenges the prevailing understanding of estrone as solely a weak agonist at estrogen receptors. This study provides evidence that estrone signaling is distinct from that of estradiol and that further investigation of estrone's mechanism of action and the biological effect may provide important insight into understanding the dysfunction and decreased number of hECFCs, and the resulting cardiovascular disease risk observed clinically in menopausal women and women undergoing hormone replacement therapy.
© 2023 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.