Background: Microvascular invasion (MVI) is a predictor of recurrence and overall survival in hepatocellular carcinoma (HCC), the preoperative diagnosis of MVI through noninvasive methods play an important role in clinical treatment.
Aims: To investigate the effectiveness of radiomics features in evaluating MVI in HCC before surgery.
Methods: We included 190 patients who had undergone contrast-enhanced MRI and curative resection for HCC between September 2015 and November 2021 from two independent institutions. In the training cohort of 117 patients, MVI-related radiomics models based on multiple sequences and multiple regions from MRI were constructed. An independent cohort of 73 patients was used to validate the proposed models. A final Clinical-Imaging-Radiomics nomogram for preoperatively predicting MVI in HCC patients was generated. Recurrence-free survival was analyzed using the log-rank test.
Results: For tumor-extracted features, the performance of signatures in fat-suppressed T1-weighted images and hepatobiliary phase was superior to that of other sequences in a single-sequence model. The radiomics signatures demonstrated better discriminatory ability than that of the Clinical-Imaging model for MVI. The nomogram incorporating clinical, imaging and radiomics signature showed excellent predictive ability and achieved well-fitted calibration curves, outperforming both the Radiomics and Clinical-Radiomics models in the training and validation cohorts.
Conclusions: The Clinical-Imaging-Radiomics nomogram model of multiple regions and multiple sequences based on serum alpha-fetoprotein, three MRI characteristics, and 12 radiomics signatures achieved good performance for predicting MVI in HCC patients, which may help clinicians select optimal treatment strategies to improve subsequent clinical outcomes.
Keywords: Hepatocellular carcinoma; Magnetic resonance imaging; Microvascular invasion; Radiomics.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.