Despite the emerging near-infrared-IIb (NIR-IIb, 1500-1700 nm) bioimaging significantly improving the in vivo penetration depth and resolution, quantitative detection with accuracy remains challenging due to its inhomogeneous fluorescence signal attenuation in biological tissue. Here, ratiometric dual-NIR-IIb in vivo detection with excitation wavelengths of 808 and 980 nm is presented using analyte-responsive dye-triplet-sensitized downshifting nanoprobes (DSNPs). NIR cyanine dye IR-808, a recognizer of biomarker hypochlorite (ClO-), is introduced to trigger a triplet energy transfer process from the dye to Er3+ ions of DSNPs under 808 nm excitation, facilitating the formation of an analyte-responsive 1525 nm NIR-IIb assay channel. Meanwhile, DSNPs also enable emitting intrinsic nonanalyte-dependent downshifting fluorescence at the same NIR-IIb window under 980 nm excitation, serving as a self-calibrated signal to alleviate the interference from the probe amount and depth. Due to the two detected emissions sharing identical light propagation and scattering, the ratiometric NIR-IIb signal is demonstrated to ignore the depth of penetration in biotissue. The arthritis lesions are distinguished from normal tissue using ratiometric probes, and the amount of ClO- can be accurately output by the established detection curves.