CurvAGN: Curvature-based Adaptive Graph Neural Networks for Predicting Protein-Ligand Binding Affinity

BMC Bioinformatics. 2023 Oct 5;24(1):378. doi: 10.1186/s12859-023-05503-w.

Abstract

Accurately predicting the binding affinity between proteins and ligands is crucial for drug discovery. Recent advances in graph neural networks (GNNs) have made significant progress in learning representations of protein-ligand complexes to estimate binding affinities. To improve the performance of GNNs, there frequently needs to look into protein-ligand complexes from geometric perspectives. While the "off-the-shelf" GNNs could incorporate some basic geometric structures of molecules, such as distances and angles, through modeling the complexes as homophilic graphs, these solutions seldom take into account the higher-level geometric attributes like curvatures and homology, and also heterophilic interactions.To address these limitations, we introduce the Curvature-based Adaptive Graph Neural Network (CurvAGN). This GNN comprises two components: a curvature block and an adaptive attention guided neural block (AGN). The curvature block encodes multiscale curvature informaton, then the AGN, based on an adaptive graph attention mechanism, incorporates geometry structure including angle, distance, and multiscale curvature, long-range molecular interactions, and heterophily of the graph into the protein-ligand complex representation. We demonstrate the superiority of our proposed model through experiments conducted on the PDBbind-V2016 core dataset.

Keywords: Adaptive graph attention mechanism; Heterophily; Multiscale curvature; Protein-ligand bingding affinity.

MeSH terms

  • Antibodies, Viral*
  • Drug Discovery
  • Ligands
  • Neural Networks, Computer
  • Neutrophils*

Substances

  • Ligands
  • Antibodies, Viral