Pyogenic liver abscess (PLA), which is particularly endemic in East Asia, is a relatively common and fatal infectious disease. Over the last 30-40 years, Klebsiella pneumoniae has replaced Escherichia coli as the dominant and overwhelming pathogen. To investigate the survival advantage of serotype K1 K. pneumoniae, we determined sequence types (STs), serotypes, and 11 virulence genes (allS, entB, irp2, iroN, iucA, fimH, mrkD, p-rmpA2, c-rmpA, p-rmpA, and peg-344). Virulence genes c-rmpA, p-rmpA, and p-rmpA2 in K. pneumoniae NTUH-K2044, which all confer hypercapsule and consequent hypervirulence, were deleted individually, and the consequent effects were evaluated. The lethality of various K1 K. pneumoniae strains was compared by using the Galleria mellonella model. In total, 31 K1 K. pneumoniae strains causing PLA and 30 causing non-PLA were identified. A significantly higher rate of c-rmpA was presented in PLA-derived K. pneumoniae strains than in non-PLA-derived strains. Similar ST23 (which dominates K1 strains) and string test-positive rates were observed in the two groups. Deletion of c-rmpA, p-rmpA, and p-rmpA2 individually did not confer significant effects on morphologies, such as positive string test, hypercapsule, and growth speed. Δc-rmpA presented weaker expressions of p-rmpA/p-rmpA2 than NTUH-K2044 and showed a higher expression of manC than Δp-rmpA and Δp-rmpA2. Three rmpAs conferred more virulence than one or two rmpAs, which presented an equally lethal effect in K1 K. pneumoniae. Klebsiella pneumoniae strains (H19 and H34) with the same genetic backgrounds except for siderophores showed equal virulence, but were less virulent than strain NTUH-K2044. Thus, the coexistence of c-rmpA with p-rmpA and p-rmpA2 enhances the lethality of K1 K. pneumoniae strains and the development of PLA. Excessive siderophores are not vital for the hypervirulence of K1 K. pneumoniae strains, although K1 strains usually harbour them on a molecular basis.
Keywords: Klebsiella pneumoniae; lethality; pyogenic liver abscess; serotype; virulence.
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.