Extremely Stable Perylene Bisimide-Bridged Regioisomeric Diradicals and Their Redox Properties

Chemistry. 2024 Jan 8;30(2):e202302943. doi: 10.1002/chem.202302943. Epub 2023 Nov 13.

Abstract

Excellent stability is an essential premise for organic diradicals to be used in organic electronic and spintronic devices. We have attached two tris(2,4,6-trichlorophenyl)methyl (TTM) radical building blocks to the two sides of perylene bisimide (PBI) bridges and obtained two regioisomeric diradicals (1,6-TTM-PBI and 1,7-TTM-PBI). Both of the isomers show super stability rather than the monomeric TTM under ambient conditions, due to the increased conjugation and the electron-withdrawing effects of the PBI bridges. The diradicals show distinct and reversible multistep redox processes, and a spectro-electrochemistry investigation revealed the generation of organic mixed-valence (MV) species during reduction processes. The two diradicals have singlet ground states, very small singlet-triplet energy gaps (ΔES-T ) and a pure open-shell character (with diradical character y0 =0.966 for 1,6-TTM-PBI and 0.967 for 1,7-TTM-PBI). This work opens a window to developing very stable diradicals and offers the opportunity of their further application in optical, electronic and magnetic devices.

Keywords: diradicals; perylene bisimides; regioisomers; stability; tris(2,4,6-trichlorophenyl)methyl radical.