While robotic-assisted surgery (RAS) has been revolutionizing surgical procedures, it has various areas needing improvement, specifically in the visualization sector. Suboptimal vision due to lens occlusions has been a topic of concern in laparoscopic surgery but has not received much attention in robotic surgery. This study is one of the first to explore and quantify the degree of disruption encountered due to poor robotic visualization at a major academic center. In case observations across 28 RAS procedures in various specialties, any lens occlusions or "debris" events that appeared on the monitor displays and clinicians' reactions, the cause, and the location across the monitor for these events were recorded. Data were then assessed for any trends using analysis as described below. From around 44.33 h of RAS observation time, 163 debris events were recorded. 52.53% of case observation time was spent under a compromised visual field. In a subset of 15 cases, about 2.24% of the average observation time was spent cleaning the lens. Additionally, cautery was found to be the primary cause of lens occlusions and little variation was found within the spread of the debris across the monitor display. This study illustrates that in 6 (21.43%) of the cases, 90% of the observation time was spent under compromised visualization while only 2 (7.14%) of the cases had no debris or cleaning events. Additionally, we observed that cleaning the lens can be troublesome during the procedure, interrupting the operating room flow.
Keywords: Lens cleaning; Lens occlusions; Robotic-assisted surgery; Surgical visualization; da Vinci surgical robot.
© 2023. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.