Genomic architecture of autism spectrum disorder in Qatar: The BARAKA-Qatar Study

Genome Med. 2023 Oct 7;15(1):81. doi: 10.1186/s13073-023-01228-w.

Abstract

Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by impaired social and communication skills, restricted interests, and repetitive behaviors. The prevalence of ASD among children in Qatar was recently estimated to be 1.1%, though the genetic architecture underlying ASD both in Qatar and the greater Middle East has been largely unexplored. Here, we describe the first genomic data release from the BARAKA-Qatar Study-a nationwide program building a broadly consented biorepository of individuals with ASD and their families available for sample and data sharing and multi-omics research.

Methods: In this first release, we present a comprehensive analysis of whole-genome sequencing (WGS) data of the first 100 families (372 individuals), investigating the genetic architecture, including single-nucleotide variants (SNVs), copy number variants (CNVs), tandem repeat expansions (TREs), as well as mitochondrial DNA variants (mtDNA) segregating with ASD in local families.

Results: Overall, we identify potentially pathogenic variants in known genes or regions in 27 out of 100 families (27%), of which 11 variants (40.7%) were classified as pathogenic or likely-pathogenic based on American College of Medical Genetics (ACMG) guidelines. Dominant variants, including de novo and inherited, contributed to 15 (55.6%) of these families, consisting of SNVs/indels (66.7%), CNVs (13.3%), TREs (13.3%), and mtDNA variants (6.7%). Moreover, homozygous variants were found in 7 families (25.9%), with a sixfold increase in homozygous burden in consanguineous versus non-consanguineous families (13.6% and 1.8%, respectively). Furthermore, 28 novel ASD candidate genes were identified in 20 families, 23 of which had recurrent hits in MSSNG and SSC cohorts.

Conclusions: This study illustrates the value of ASD studies in under-represented populations and the importance of WGS as a comprehensive tool for establishing a molecular diagnosis for families with ASD. Moreover, it uncovers a significant role for recessive variation in ASD architecture in consanguineous settings and provides a unique resource of Middle Eastern genomes for future research to the global ASD community.

Keywords: ASD; ASD risk genes; Autism spectrum disorder; BARAKA cohort; De novo variants; Middle Eastern population; SNVs; Whole genome sequencing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autism Spectrum Disorder* / epidemiology
  • Autism Spectrum Disorder* / genetics
  • Child
  • DNA Copy Number Variations
  • DNA, Mitochondrial
  • Genetic Predisposition to Disease
  • Genome
  • Genomics
  • Humans
  • Qatar / epidemiology

Substances

  • DNA, Mitochondrial