Lithium-metal batteries (LMBs) are considered the "holy grail" of the next-generation energy storage systems, and solid-state electrolytes (SSEs) are a kind of critical component assembled in LMBs. However, as one of the most important branches of SSEs, polymer-based electrolytes (PEs) possess several native drawbacks including insufficient ionic conductivity and so on. Click chemistry is a simple, efficient, regioselective, and stereoselective synthesis method, which can be used not only for preparing PEs with outstanding physical and chemical performances, but also for optimizing the stability of solid electrolyte interphase (SEI) layer and elevate the cycling properties of LMBs effectively. Here it is primarily focused on evaluating the merits of click chemistry, summarizing its existing challenges and outlining its increasing role for the designing and fabrication of advanced PEs. The fundamental requirements for reconstructing artificial SEI layer through click chemistry are also summarized, with the aim to offer a thorough comprehension and provide a strategic guidance for exploring the potentials of click chemistry in the field of LMBs.
Keywords: click chemistry; lithium-metal batteries; polymer-based electrolytes; solid electrolyte interphase.
© 2023 Wiley-VCH GmbH.