To overcome the drawback that excess SO32- from soluble Na2SO3 captures the generated reactive intermediates in sulfite (S(IV))-based advanced oxidation processes (AOP), CaSO3 of the ability to slowly release SO32- is selected as an alternative S(IV) source to establish an enduring S(IV)-based AOP with Co(II). Herein, the Co(II)/CaSO3 process triggers a much better ofloxacin (OFL) degradation than the Co(II)/Na2SO3 process (degradation rate constant: 12.1 > 3.18 mM-1 min-1). The mechanism investigation corroborates that the Co(II) mediated CaSO3 activation follows a Fenton-like process (complexation followed by intramolecular electron transfer). Apart from the conventional sulfate radical (SO4•-), Co(IV) species and singlet oxygen (1O2) are also certifiably involved in Co(II)/CaSO3 process, and their role and formation mechanisms are elucidated comprehensively. Further, the proposed Co(II)/CaSO3 process exhibits an excellent tolerance to complex water matrices (e.g., background ions and humic acid), suggesting its practical application potential for various contaminants abatement in actual wastewater.
Keywords: Advanced oxidation process; Calcium sulfite; High-valent cobalt species; Singlet oxygen; Sulfate radical.
Copyright © 2023 Elsevier B.V. All rights reserved.