In complex social environments, individuals may interact with not only novel and familiar conspecifics but also kin and non-kin. The ability to distinguish between conspecific identities is crucial for most animals, yet how the brain processes conspecific type and how animals may alter behavior accordingly is not well known. We examined whether the communally breeding spiny mouse (Acomys cahirinus) responds differently to conspecifics that vary in novelty and kinship. In a group interaction test, we found that males can distinguish novel kin from novel non-kin, and preferentially spend time with novel kin over familiar kin and novel non-kin. To determine whether kinship and novelty status are differentially represented in the brain, we conducted immediate early gene tests, which revealed the dorsal, but not ventral, lateral septum differentially processes kinship. Neither region differentially processes social novelty. Further, males did not exhibit differences in prosocial behavior toward novel and familiar conspecifics but exhibited more prosocial behavior with novel kin than novel non-kin. These results suggest that communally breeding species may have evolved specialized neural circuitry to facilitate a bias to be more affiliative with kin, regardless of whether they are novel or familiar, potentially to promote prosocial behaviors, thereby facilitating group cohesion.
© 2023. Springer Nature Limited.