Introduction: Pneumoconiosis emerges as the most critical and prevalent occupational disease in China at present, according to research. Studies indicate that pneumoconiosis may indeed impact the body's phospholipid metabolism.
Methods: In this study, serum samples were taken from 46 paired participants, which included patients with pneumoconiosis and dust-exposed workers. We employed ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology in targeted lipidomics to investigate serum target phospholipids. Initially, a pilot study was conducted with a selection of 24 pneumoconiosis patients and 24 dust-exposed workers, using both univariate and multivariate statistical analyses to preliminarily identify significant differences in phospholipids. Subsequent to this, the remaining subjects were engaged in a validation study, wherein receiver operating characteristic (ROC) analysis was performed to further substantiate the screening potency of potential lipid biomarkers for pneumoconiosis.
Results: The pilot study revealed significantly reduced serum levels of 16∶0 lysophosphatidylcholines (Lyso PC), 18∶0-18∶1 phosphatidylglycerol (PG), 18∶0-18∶1 phosphatidylethanolamine (PE), 18∶0 PE, and 18∶1 lysophosphatidylethanolamine(Lyso PE) in the case group in comparison to the control group. Additionally, 18∶0 PE, 18∶0-18∶1 PE, and 18∶1 Lyso PE emerged as significant phospholipids with superior diagnostic values [area under the curve (AUC)>0.7]. A diagnostic model was established, built on 16∶0 PC and 18∶0 PE (AUC>0.8). In the ROC analyses of validation studies, the 18∶0-18∶1 PE and this diagnostic model demonstrated excellent screening efficiency (AUC>0.7).
Discussion: A significant divergence in phospholipid metabolism has been observed between pneumoconiosis patients and dust-exposed workers. The 18∶0-18∶1 PE present in serum could potentially function as a lipid biomarker for pneumoconiosis. Additionally, diagnostic models were developed relying on 16∶0 PC and 18∶0 PE, proving to have superior screening efficiency.
Keywords: phospholipids; pneumoconiosis; serum; targeted lipidomics.
Copyright and License information: Editorial Office of CCDCW, Chinese Center for Disease Control and Prevention 2023.