Breast cancer comprises approximately 20% of all malignant neoplasm cases globally. Due to the limitations associated with conventional therapeutic approaches, extensive investigations have been undertaken to develop novel treatments that exhibit enhanced specificity and minimized adverse effects. Consequently, the application of polymeric nanoformulations for targeted drug delivery has gained significant attention within the biomedical field. Therefore, the primary objective of this study was to explore the inherent advantages and efficacy of employing polymeric nanoformulations for drug delivery in breast cancer treatment, as compared to traditional therapies. A comprehensive literature search was conducted across prominent databases including PubMed/MEDLINE, Embase, and Scopus, utilizing specific search strings. This meticulous approach yielded a total of 12 relevant articles for in-depth analysis and discussion. The findings from the selected studies underscore the effectiveness of employing polymeric nanoparticles as a drug delivery strategy, showcasing noteworthy improvements in cellular uptake and sustained intracellular retention of encapsulated therapeutic agents. Additionally, these nanoformulations exhibited superior efficacy, safety, and drug delivery capabilities. The utilization of polymeric nanoparticles in drug delivery has demonstrated a substantial enhancement in treatment efficacy, with the ability to achieve higher concentrations of active ingredients within tumor tissues, augment cellular uptake and drug concentrations, and sustain intracellular retention. Consequently, this innovative approach prolongs drug release in lower quantities, ultimately contributing to improved treatment outcomes.
Keywords: Breast cancer; Drug delivery system; Drug utilization; Nanoparticles.
© King Abdulaziz City for Science and Technology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.