The human gut microbiome modulates physiological functions and pathologies; however, a mechanistic understanding of microbe-host and microbe-microbe interactions remains elusive owing to a lack of suitable approaches to monitor obligate anaerobic bacterial populations. Common genetically encoded fluorescent protein reporters, derived from the green fluorescent protein, require an oxidation step for fluorescent light emission and therefore are not suitable for use in anaerobic microbes residing in the intestine. Fluorescence in situ hybridization is a useful alternative to visualize bacterial communities in their natural niche; however, it requires tissue fixation. We therefore developed an approach for the real-time detection and monitoring of live communities of anaerobic gut commensals in their natural environment. We leverage the bacterial cells' reliance on sugars for macromolecule synthesis in combinatorial click chemistry labeling, where the addition of azide-modified sugars to the culturing media enables the fluorescence labeling of newly synthesized molecules via the addition of combinations of exogenous fluorophores conjugated to cyclooctynes. This process is suitable for labeling communities of live anaerobic gut bacteria with combinations of fluorophores that do not require oxygen to mature and fluoresce, and that can be detected over time in their natural environments. The labeling procedure requires 4-9 d, depending on the varying growth rates of different bacterial strains, and an additional 1-2 d for the detection and monitoring steps. The protocol can be completed by users with basic expertise in bacterial culturing.
© 2023. Springer Nature Limited.