Readthrough isoform of aquaporin-4 (AQP4) as a therapeutic target for Alzheimer's disease and other proteinopathies

Alzheimers Res Ther. 2023 Oct 11;15(1):170. doi: 10.1186/s13195-023-01318-2.

Abstract

The glymphatic system is a crucial component in preserving brain homeostasis by facilitating waste clearance from the central nervous system (CNS). Aquaporin-4 (AQP4) water channels facilitate the continuous interchange between cerebrospinal fluid and brain interstitial fluid by convective flow movement. This flow is responsible for guiding proteins and metabolites away from the CNS. Proteinopathies are neurological conditions characterized by the accumulation of aggregated proteins or peptides in the brain. In Alzheimer's disease (AD), the deposition of amyloid-β (Aβ) peptides causes the formation of senile plaques. This accumulation has been hypothesized to be a result of the imbalance between Aβ production and clearance. Recent studies have shown that an extended form of AQP4 increases Aβ clearance from the brain. In this mini-review, we present a summary of these findings and explore the potential for future therapeutic strategies aiming to boost waste clearance in AD.

Keywords: Alzheimer’s; Aquaporin-4; Protein aggregation; Proteinopathies; Therapeutic target; Waste clearance.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / metabolism
  • Amyloid beta-Peptides / metabolism
  • Aquaporin 4 / metabolism
  • Brain / metabolism
  • Humans
  • Protein Isoforms / metabolism
  • Proteostasis Deficiencies* / metabolism

Substances

  • Amyloid beta-Peptides
  • Aquaporin 4
  • Protein Isoforms
  • AQP4 protein, human