Effect of packaging materials on lycopene vitamin C and water activity of dried tomato (Lycopersicon esculentum Mill.) powder during storage

Food Sci Nutr. 2023 Jul 11;11(10):6223-6230. doi: 10.1002/fsn3.3562. eCollection 2023 Oct.

Abstract

In this work, a storage study was conducted to find suitable packaging material for tomato powder storage. Experiments were laid out in a single factor completely randomized design (CRD) to study the effect of packaging materials on lycopene, vitamin C moisture content, and water activity of tomato powder; The factor (packaging materials) has three levels (low-density polyethylene bag, polypropylene bottle, wrapped with aluminum foils, and packed in low-density polyethylene bag) and is replicated three times. During the study, a twin layer solar tunnel dried tomato slices of var. Galilea was used. The dried tomato slices were then ground and packed (40 g each) in the packaging materials and stored at room temperature. Samples were drawn from the packages at 2-month interval for quality analysis and SAS (version 9.2) software was used for statistical analysis. From the result, higher retention of lycopene (80.13%) and vitamin C (49.32%) and a nonsignificant increase in moisture content and water activity were observed for tomato powder packed in polypropylene bottles after 6 months of storage. For low-density polyethylene packed samples and samples wrapped with aluminum foil and packed in a low-density polyethylene bag, 57.06% and 60.45% lycopene retention and 42.9% and 49.23% Vitamin C retention were observed, respectively, after 6 months of storage. Considering the results found, it can be concluded that lycopene and vitamin C content of twin layer solar tunnel dried tomato powder can be preserved at ambient temperature storage by packing in a polypropylene bottle with a safe range of moisture content and water activity levels for 6 months.

Keywords: packaging; solar drying; storage; tomato powder.