Low-nuclear site catalysts with dual atoms have the potential for applications in energy and catalysis chemistry. Understanding the formation mechanism of dual metal sites is crucial for optimizing local structures and designing desired binuclear sites catalysts. In this study, we demonstrate for the first time the formation process of dual atoms through the pyrolysis of the interface of a double framework using Zn atoms in metal-organic frameworks and Co atoms in covalent organic frameworks. We unambiguously revealed that the cooling stage is the key point to form the binuclear sites by employing the in situ synchrotron radiation X-ray absorption spectrum technique. The binuclear site catalysts show higher activity and selectivity than single dispersed atom catalysts for electrocatalytic oxygen reduction. This work guides us to synthesize and optimize the various binuclear sites for extensive catalytic applications.
Keywords: Binuclear Sites; Oxygen Reduction Reaction; Single Atom Catalysis; X-Ray Absorption Spectrum.
© 2023 Wiley-VCH GmbH.