Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture

Small. 2024 Feb;20(8):e2307928. doi: 10.1002/smll.202307928. Epub 2023 Oct 12.

Abstract

Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long-standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co-developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.

Keywords: granular hydrogel; micropuncture; translational biomaterials; vascular pattern; vascularization.

MeSH terms

  • Humans
  • Hydrogels / pharmacology
  • Neovascularization, Pathologic
  • Neovascularization, Physiologic
  • Punctures
  • Tissue Engineering*
  • Tissue Scaffolds*

Substances

  • Hydrogels