The many paths to artemisinin resistance in Plasmodium falciparum

Trends Parasitol. 2023 Dec;39(12):1060-1073. doi: 10.1016/j.pt.2023.09.011. Epub 2023 Oct 11.

Abstract

Emerging resistance against artemisinin (ART) poses a major challenge in controlling malaria. Parasites with mutations in PfKelch13, the major marker for ART resistance, are known to reduce hemoglobin endocytosis, induce unfolded protein response (UPR), elevate phosphatidylinositol-3-phosphate (PI3P) levels, and stimulate autophagy. Nonetheless, PfKelch13-independent resistance is also reported, indicating extensive complementation by reconfiguration in the parasite metabolome and transcriptome. These findings implicate that there may not be a single 'universal identifier' of ART resistance. This review sheds light on the molecular, transcriptional, and metabolic pathways associated with ART resistance, while also highlighting the interplay between cellular heterogeneity, environmental stress, and ART sensitivity.

Keywords: PfKelch13; Plasmodium falciparum; artemisinin resistance; malaria; stress response.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antimalarials* / pharmacology
  • Antimalarials* / therapeutic use
  • Artemisinins* / pharmacology
  • Artemisinins* / therapeutic use
  • Drug Resistance / genetics
  • Humans
  • Malaria, Falciparum* / drug therapy
  • Malaria, Falciparum* / parasitology
  • Mutation
  • Plasmodium falciparum / genetics
  • Plasmodium falciparum / metabolism
  • Protozoan Proteins / genetics
  • Protozoan Proteins / metabolism

Substances

  • Antimalarials
  • artemisinin
  • Artemisinins
  • Protozoan Proteins