Two-dimensional multiferroic (2D) materials have garnered significant attention due to their potential in high-density, low-power multistate storage and spintronics applications. MXenes, a class of 2D transition metal carbides and nitrides, were first discovered in 2011, and have become the focus of research in various disciplines. Our study, utilizing first-principles calculations, examines the lattice structures, and electronic and magnetic properties of nitride MXenes with intrinsic band gaps, including V2NF2, V2NO2, Cr2NF2, Mo2NO2, Mo2NF2, and Mn2NO2. These nitride MXenes exhibit orbital ordering, and in some cases the orbital ordering induces magnetoelastic coupling or magnetoelectric coupling. Most notably, Cr2NF2 is a ferroelastic material with a spiral magnetic ordered phase, and the spiral magnetization propagation vector is coupled with the direction of ferroelastic strain. The ferroelectric phase can exist as an excited state in V2NO2, Cr2NF2, and Mo2NF2, with their magnetic order being coupled with polar displacements through orbital ordering. Our results also suggest that similar magnetoelectric coupling effects persist in the Janus MXenes V8N4O7F, Cr8N4F7O, and Mo8N4F7O. Remarkably, different phases of Mo8N4F7O, characterized by orbital ordering rearrangements, can be switched by applying external strain or an external electric field. Overall, our theoretical findings suggest that nitride MXenes hold promise as 2D multiferroic materials.
Keywords: MXenes; density functional theory; multiferroic.