An increasing number of studies have shown the key role that RNA polymerase II (RNA Pol II) elongation plays in gene regulation. We systematically examine how various enhancers, promoters, and gene body composition influence the RNA Pol II elongation rate through a single-cell-resolution live imaging assay. By using reporter constructs containing 5' MS2 and 3' PP7 repeating stem loops, we quantify the rate of RNA Pol II elongation in live Drosophila embryos. We find that promoters and exonic gene lengths have no effect on elongation rate, while enhancers and the presence of long introns may significantly change how quickly RNA Pol II moves across a gene. Furthermore, we observe in multiple constructs that the RNA Pol II elongation rate accelerates after the transcriptional onset of nuclear cycle 14 in Drosophila embryos. Our study provides a single-cell view of various mechanisms that affect the dynamic RNA Pol II elongation rate, ultimately affecting the rate of mRNA production.
Keywords: CP: Molecular biology; Drosophila; MS2; PP7; elongation rate; enhancers; live imaging; transcription.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.